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Abstract—Existing video rain removal methods mainly focus on rain streak removal and are solely trained based on the synthetic data,

which neglect more complex degradation factors, e.g., rain accumulation, and the prior knowledge in real rain data. Thus, in this paper,

we build a more comprehensive rain model with several degradation factors and construct a novel two-stage video rain removal method

that combines the power of synthetic videos and real data. Specifically, a novel two-stage progressive network is proposed: recovery

guided by a physics model, and further restoration by adversarial learning. The first stage performs an inverse recovery process guided

by our proposed rain model. An initially estimated background frame is obtained based on the input rain frame. The second stage

employs adversarial learning to refine the result, i.e., recovering the overall color and illumination distributions of the frame, the

background details that are failed to be recovered in the first stage, and removing the artifacts generated in the first stage. Furthermore,

we also introduce a more comprehensive rain model that includes degradation factors, e.g., occlusion and rain accumulation, which

appear in real scenes yet ignored by existing methods. This model, which generates more realistic rain images, will train and evaluate

our models better. Extensive evaluations on synthetic and real videos show the effectiveness of our method in comparisons to the

state-of-the-art methods. Our datasets, results and code are available at: https://github.com/flyywh/Recurrent-Multi-Frame-Deraining.

Index Terms—Multi-frame, video rain removal, physics recovery guidance, adversarial learning

Ç

1 INTRODUCTION

RAIN degrades videos, causing outdoor computer vision
systems to be erroneous, as most of them assume clear

input videos. There are a few factors of rain degradation.
Rain streaks lead to intensity changes in image content,
obscuring the background and blurring the scene. Rain
streaks can also completely occlude some background sig-
nals, where no background signals go through, a phenome-
non we call rain occlusion. Rain accumulation (also known as
rain veiling effect), where individual rain streaks and water
particles accumulate forming visual effects similar to mist
or fog, impair the background contrast, reducing the distant
scenes’ visibility significantly. When rainfall intensity in
some period of time changes rapidly, rain accumulation can

fluctuate over the period of time, which is visually like a
flowing transparent veil covering the background. We call
this phenomenon accumulation flow.

Manymethods have been proposed toderain either images
or videos. Single-image-based methods, e.g., [15], [20], [28],
[34] employ some techniques, such as a frequency-domain
representation [20], sparse representation [28], Gaussian mix-
ture model [25] and deep networks [8], [42]. Video-based
methods, e.g., [1], [2], [11], [46] make full use of both temporal
and spatial information. Garg andNayar [11] utilize the phys-
ics properties of rain, e.g., chromatic and direction. Kim et al.
and Jiang et al. [19], [21] further exploit temporal dynamics,
i.e., background motion’s continuity, rain streaks’ random
occurrence, andmotion cues.

Recently, deep-learning based methods have been
proposed to tackle the video deraining problem. In [4],
a rain image is first segmented into superpixels, then a
consistency constraint is imposed on these aligned
superpixels. Li et al. [23] propose a multiscale convolu-
tional sparse coding-based video rain streak removal
method. Liu et al. [26], [27] build a recurrent network
to jointly integrate the tasks of rain degradation detec-
tion, background reconstruction and rain removal. In
[18], [19], a tensor decomposition based deraining
methods is proposed to fully consider the discrimina-
tive characteristics of clean backgrounds and rain
streaks in the gradient domain. While these video
deraining methods can be effective in some cases, they
all are designed to handle only rain streak removal.
Little attention is given to other factors of rain degra-
dation, such as rain accumulation, despite their degra-
dation in many cases is obviously visible. Moreover,
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how to make a full use of inter-frame and intra-frame
contexts to promote joint estimation of multiple rain-
related factors has not been fully explored.

Our goal in this paper is to handle video deraining in a
more comprehensive way by fully considering the rain-
related factors: rain streak, rain accumulation, accumulation
flow, and rain occlusion as illustrated in Fig. 1. To achieve
the goal, we introduce a new rain model to synthesize more
visually realistic effects of various factors, i.e., rain streak,
rain occlusion, rain accumulation, and accumulation flow.
We also design a two-stage progressive network, which
combines the rain model as well as both physics and natural
video priors. In the first stage, a rain-free frame is recovered,
which is followed by the inverse process based on our rain
model. Subsequently, with the help of the previously recov-
ered clean frames and the initial estimation, in the second
stage, a more accurate estimation is inferred using adversar-
ial learning.

Our contributions can be summarized as follows:

� A new rain model is proposed. Beyond existing
video rain models, it captures rain degradation fac-
tors comprehensively, i.e., rain accumulation, accu-
mulation flow, rain streaks, and rain occlusion,
providing more realistic modeling of rain scenes.
Based on the model, a novel rain video dataset is
synthesized to support the development and evalua-
tion of learning-based video rain removal methods
in heavy rain.

� To make full use of the spatial and temporal con-
texts in rain scenes, a convolutional LSTM network
is introduced to our deraining network. In the net-
work, the inverse recovery module (physics network)

is embedded. The rain-related variables are predicted.
Then, the physics network estimates the rain-free
frame based on the rain-related variables. This design
takes advantages of the prior of the rain model and
brings in amore effective architecture.

� Our proposed LSTM network has a two-stage design,
whichmakes the first attempt to utilize the knowledge
of both rain model and adversarial learning for video
deraining. The first stage provides the physics accurate
results and the second stage, where the results are
further processed by the generator trained via the
adversarial learning, adjusts the color and contrast dis-
tributions, correct details and remove artifacts.

This paper is an extension of [41], where we make fur-
ther significant improvements: 1) In [41], for our synthetic
data, the transmission used to generate the accumulation is
constant within a frame. In this work, we change it to pixel-
wise adaptive. The detail is illustrated in Section 5-Datasets.
2) We introduce the information of multiple frames in our
two-stage progressive learning framework. In our current
version, the models take five successive frames as their
input in each stage, which is demonstrated to largely out-
perform the previous conference version. 3) To further uti-
lize the prior knowledge of natural images, we apply the
adversarial learning in the second stage of refinement net-
work, to adjust the color and contrast as well as to correct
the details and remove the artifacts generated in the physics
recovery process. Extensive experiments demonstrate that,
with the above-mentioned contributions, our model outper-
forms previous methods (including our conference version)
quantitatively and qualitatively.

The rest of our paper is organized as follows. Section 2
illustrates the related work briefly. Section 3 presents our pro-
posed comprehensive rain synthesis model. Section 4 pro-
poses our recurrent video deraining network in details. In
Section 5, experimental configurations and results are pre-
sented. The concluding remarks are provided in Section 6.

2 RELATED WORK

2.1 Single-Image Rain Removal

Single image rain removal is an ill-posed task. To handle the
ill-possessedness, different models and priors are utilized to
separate the normal texture and rain signal from rain
images. These models consist of sparse coding [20], Gauss-
ian mixture model [25], discriminative sparse coding [28],
rain direction prior [45], bilayer optimization [47], joint
convolution analysis and synthesis sparse representation
model [12]. The advent of deep networks promote the fast
evolution of the rain removal from single images. In [7], [8],
deep detail networks are constructed to infer the negative
residue according to the information of the extracted high-
frequency details of the rain images.

Yang et al. [42] developed deep networks to detect and
remove rain streak in a joint manner, and to recurrent
remove the rain streaks and accumulation. In [24], in order
to handle the rain streaks having different sizes, Li et al.
built several parallel sub-networks to generate the interme-
diate results, and after that, intermediate results are inte-
grated into the final result. In [45], a new multi-stream
density-aware densely connected CNN is built to estimate

Fig. 1. Visibility degradation caused by rain. (a) Rain streaks. (b) Rain
accumulation. (c) Rain accumulation flow. The atmosphere flow makes
veiling layers’ densities at the same pixel of two frames different. (d)
Rain occlusion. There is an identical intensity in the occlusion regions.
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rain density and remove rain streaks sequentially. In [30], a
progressive recurrent network is constructed, which is
incorporated with gate functions and recurrent units to cap-
ture the deep features’ inter-stage dependencies to remove
rain streak. In [9], inspired by Gaussian Laplacian pyramid
decomposition, the network is designed to perform opera-
tions on the decomposition result, which makes the derain-
ing process more efficiently and the model learning easier.

Yasarla et al. [44] proposed a network to extract rain-
related content first at different scales and the correspond-
ing confidence measure, which later on guides the succes-
sive rain removal process. In [13], Hu et al. developed a
deep network for obtaining the depth-attentional features
to estimate a residual signal and restore a clean background
one. In [37], a spatial attentive network is built to remove
rain streaks with the local-to-global attention guidance.
Compared to the above-mentioned single-image rain removal
work, only relying on exploiting spatial correlation, in our
work, video rain removal is focused on,wherewe exploit tem-
poral and spatial correlation jointly for removing rain from
videos.

2.2 Multi-Frame Rain/Haze Removal

Video rain removal can exploit the temporal information
and motion context additionally. Garg and Nayar make the
first attempt to build the rain model [11] and deal with rain
removal problem [10]. The later works address the problem
with more flexible and intrinsic modeling of rain streaks
and backgrounds, i.e., the shape, orientation, and size of
rain streaks [2], Fourier domain feature [1], temporal and
chromatic properties [46], phase congruency features [32],
and rain streaks’ directional tendency [19]. Later on, data-
driven methods emerge and brings new progress as well as
improved modeling capacity.

In [35], [36], with the help of the temporal and spatial fea-
tures, a Bayesian rain detector is developed. Wei et al. [39]
made attempt to encode rain streaks as mixtures of Gauss-
ian. The model can finely adapt to a wide kind of rain varia-
tions. Kim et al. [21] trained an SVM. The SVM can be used
to re-estimate the roughly detected rain streak maps.
In [31], a matrix decomposition model is designed. The
model is utilized to classify rain streaks into dense and
sparse streaks. In [4], a rain image is first segmented into
superpixels. Then, the aligned superpixels are enforced by
the consistency constraints. After that, the aligned superpix-
els are compensated for the the lost details. In [23], a multi-
scale convolutional sparse coding approach is designed for
video deraining. In [26], Liu et al. built a recurrent network
to seamlessly integrate the multi-task of rain degradation
detection, rain removal and background reconstruction.
However, all of these previous methods do not pay atten-
tion to dealing with rain accumulation.

A series of works that focus on video haze removal pro-
vide meaningful insights to handle rain accumulation.
Zhang et al. [51] estimated the scene depth jointly with the
clear latent image, where the formulation models the depth
cues from stereo matching and fog information in a mutu-
ally beneficial way. Cai et al. [52] built a Markov random
field injected with intensity value prior to improve spatial

consistency and temporal coherence for video dehazing.
In [22], Li et al. conducted a thorough study over a number
of network structure choices for the temporal fusion in the
end-to-end learning context. Besides, the video dehazing
and object detection are optimized jointly. In [50], Ren et al.
build an end-to-end learnable deep network to gather infor-
mation among adjacent frames to estimate the transmission.

In our work, we target at handling more kinds of visibil-
ity degradation based on the rain synthesis model we pro-
pose, i.e., rain streaks, accumulation, accumulation flow,
occlusion. To better utilize inter-frame correlation, a two-
step RNN is designed to fully make use of the knowledge of
physics guidance and adversarial learning. The first stage
provides the physics accurate results and then in the second
stage, the results are further processed by the generator
trained via the adversarial learning, to adjust the color and
contrast distributions as well as to correct details and
remove artifacts.

3 COMPREHENSIVE RAIN MODEL

To handle video deraining issue, we develop a new compre-
hensive rain model. Using the model, we synthesize rain
images from clean ones with the four degradation factors:
rain streaks, rain accumulation, accumulation flow and rain
occlusion. Rain streaks are the falling raindrops that form
whitish streaks due to raindrops’ rapid speed relative to the
camera’s exposure time. Their appearance occludes the back-
ground, as illustrated in Fig. 1a. In our rain-streak rendering,
rain streaks are fused linearly with the clean background
frames [8], [25], [42]. Rain accumulation occurs when the dis-
tant rain streaks together with water particles interweave,
generating an atmospheric veiling effect [24], [42] where indi-
vidual rain-streaks cannot be seen individually any more, as
illustrated in Fig. 1b. In our rendering, we follow the physics
model commonly used to generate fog [42].

In videos, rain accumulation can be dynamic due to wind
or other atmospheric conditions. This dynamic rain accu-
mulation over time form accumulation flow, which shown
in Fig. 1c. Its transparency is independent from the depth of
the background. It takes any shape, and produces a semi-
transparent covering veil effect. Its existence is continuous
temporally. In the synthesis process, we sample a nature
gray image, blur it, and then adjust its intensity range glob-
ally to simulate the accumulation flow. At a given temporal
step, we will randomly generate the motion vector of the
accumulation flow at the moment and the flow is then set
based on the vector to move in different temporal steps. The
light transmittance of raindrops turns to be low in the heavy
rain case. In this case, the additive rain model is not obeyed
anymore, and the rain region is identical in intensity [26].
As illustrated in Fig. 1d, the background information is
totally occluded. The occlusion image is rendered through
an alpha matting process. Its generation is guided a binary
mask, with a rain-contaminated image as well as the given
intensity map to fuse.

In its basic form, our rain model follows the commonly
used rain model for a single image [16], [25], [28]:

O ¼ Bþ S; (1)

YANG ETAL.: RECURRENT MULTI-FRAME DERAINING: COMBINING PHYSICS GUIDANCE ANDADVERSARIAL LEARNING 8571

Authorized licensed use limited to: Peking University. Downloaded on November 01,2022 at 06:52:18 UTC from IEEE Xplore.  Restrictions apply. 



where S represents rain streaks, B represent the rain-free
frame, and O is the image degraded by rain streaks. For
video, we add a temporal indicator t:

Ot ¼ Bt þ St; t ¼ 1; 2; . . . ; N; (2)

where N denotes the number of the video frames. St, the
rain streaks, are assumed to be independent and identically
distributed [33]. Taking into account rain accumulation and
accumulation flow, our model is expressed as:

Ot ¼ btBt þ ð1� btÞAt þUt þ St; t ¼ 1; 2; . . . ; N: (3)

where At represents the global atmospheric light, bt repre-
sents atmospheric transmission that dependent on the
depth of scene , and Ut denotes the rain accumulation flow
layer that dependent on the atmospheric flow and local
raindrop density. All these factors are temporally continu-
ous. For a given fixed scene, Atf g and atf g are affected only
by the camera motions. Utf g has its motion trajectory.
Finally, similar to modeling rain occlusions in [26], [27]:

O
0
t ¼ 1� atð Þ Bt þ Stð Þ þ atMt; (4)

where at signifies an alpha matting map, and Mt is the rain
reliance map, the rain model starting from Eq. (3) to
describe rain occlusions is expressed as:

eOt ¼ 1� atð ÞOt þ atMt: (5)

Therefore, we obtain a rain model that captures rain streaks,
accumulation, accumulation flow, and occlusions in a com-
prehensive way.

With the guidance of our rain model (5), we can synthesize
more realistic-looking rain videos compared to existing meth-
ods. Two rendered examples by our model are shown in
Fig. 2. Based on the rain synthesis model, we build a novel
video rain dataset. More details are discussed in Section 5. A
summary of commonly used datasets in recent video rain
removal works, including their included degradation factors,
rain models, main features, and code links, are provided in
Table 1. Most of previously adopted datasets (TCLRM, Sto-
chastic, MS-CSC, DIP, FastDeRain, MRF, and NTURain) only
consider rain streak degradation and takes the rain model in

Eq. (2). RainSynLight25 and RainSynComplex25 additionally
model rain occlusions and their related rain models turn
Eq. (4). Our dataset is build based on Eq. (5) and four kinds of
degradation factors are included.

4 RECURRENT VIDEO DERAINING NETWORK

Our method is based on a two-stage network that utilizes
multi-frames to derain the input video progressively. The
initially derained estimations are used as guidance on the
refined deraining network, which extracts more effective
features. The first stage of our method follows the inverse
recovery process in Eq. (3) and Eq. (5). Our method makes
use of both the prior knowledge of rain model via injecting
physics network and nature image distributions by employ-
ing the adversarial learning. As rain models cannot totally
simulate complex rain scenes, i.e., the complex real rain
accumulation and illumination change after the degrada-
tion, therefore, we introduce an enhancement network that
applies adversarial learning to adjust the derained results
generated by the inverse recovery of a rain model.

4.1 Network Architecture

Our method consists of 3 main networks: the initial deraining
network (Initial-DerainNet), inverse recovery network (Phys-
icsNet) refined deraining network (Refined-DerainNet), as
illustrated in Fig. 3. In the first stage, Initial-DerainNet takes
successive rain frames Ot�2;Ot�1; . . . ;Otþ2 as its input and
estimates the rain-related variables of the frame t (ĥt; b̂

i
t;

andÂt), where ĥt aims to regressOt �Ut � St. PhysicsNet uti-
lizes the predicted rain-related variables to estimate the initial
background (rain-free) frame bBi

t with the help of Eqs. (3)
and (5).

In the second stage, Refined-DerainNet takes the existing
clean frames (bBf

t�2,
bBf
t�1 and the initially estimated clean

frame Bi
t from the first stage) as well as their corresponding

rain frames Otþ1 and Otþ2 as input to predict the refined
background frame bBf

t . The adversarial learning is used to
constrain the training of the Refined-DerainNet, i.e., the
generation process of bBf

t . We utilize multiples losses to
jointly regularize the recovery of bBf

t to accurately predict
background frames while keeping the generalization capac-
ity of the models. Note that, compared to [41] we do not
align the frames. We observed that, alignment cannot lead
to performance gains in our new framework, which takes
successive five frames as input. The exclusion of the align-
ment process reduces the network’s complexity.

4.2 Initial Deraining Network

Initial-DerainNet’s architecture is a U-Net [49] like network,
as illustrated in Fig. 3. A few frames are fed into convolu-
tional layers concurrently and transformed into features via
multiple convolutional layers. For the intermediate layers,
we down-sample the spatial resolutions of features (at the
encoder side) and then up-sample them (at the decoder
side). In the encoder part, 3D convolutions are used to
change the resolution sizes and shrink the temporal step of
the tensor stacked by the features of the input frames. The
specific structure of the encoder is depicted in Fig. 4a. The
input frames are rearranged into two sequences:

Fig. 2. Several example data based on our synthesis data produced by
Eq. (5).
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s1 ¼ s2 ¼ Ot�2;Ot�1;Ot;Otþ1;Otþ2½ �; (6)

which are processed by two sub-encoder as illustrated in
Fig. 4b and the extracted features are summed together after
the process as illustrated in Fig. 4a.

As shown in Fig. 3, we use the skip connections (red
lines), which help the features produced by the shallow
layers reach the decoder’s counterpart layers. Initial-Derain-
Net generates three rain-related variables:

v̂it ¼ ĥi
t; Â

i
t; b̂

i
t

h i
¼ GI s1; s2ð Þ; (7)

where ĥi
t, Âi

t, and b̂i
t are rain streak-free image (might

including rain accumulation), atmospheric air light and
transmission of the rain accumulation estimated by the first

stage Initial-DerainNet. GIð�Þ denotes the Initial-DerainNet
process.

There are three decoders to decode the feature generated by
the encoder to output ĥi

t, Â
i
t, and b̂i

t, respectively. Note that,
the estimations of Âi

t and b̂i
t will influence each other, hence

we make them share the same encoder. Due to Âi
t is a global

variable, there are no skip connections that bypassing the fea-
tures from the encoder to the corresponding decoder side. A
convolutional LSTM is used to feed-forward the information
at the feature level across frames at the end of the convolu-
tional layers at the beginning of the decoder side, as denoted
in Fig. 3.

4.3 Physics Module

Given ĥi
t, b̂

i
t, and Âi

t, we employ Eq. (3) to estimate the clean
background frame B̂i

t with the guidance of a single frame rain
input:

TABLE 1
Summary of Rain Synthetic Models in the Literature

Name # Sequence Degradation Model Main Features Publication

TCLRM1 9 (Synthetic Test) 6
(Real Test)

Streak Eq. (2) The real testing sequences include 1 captured
one and 5 movie clips. 3 of 9 synthetic

sequences are captured with moving cameras,
whereas 6 of 9 are captured with stationary

ones.

Kim et al.
2015 [21]

Stochastic2 4 (Synthetic Test) 2
(Real Test)

Streak Eq. (2) Rain streaks, varied from tiny drizzling to heavy
rainstorms, are added to four videos with static

backgrounds.

Wei et al.
2017 [39]

MS-CSC3 3 (Synthetic Test) 3
(Real Test)

Streak Eq. (2) Different types of rain streaks are added to these
videos, varying from tiny drizzling to heavy
rainstorms and vertical rain to slash lines.

Li et al.
2018 [23]

DIP 6 (Synthetic Test) 2
(Real Test)

Streak Eq. (2) The synthesized rain videos include heavy and
light synthetic rain.

Jiang et al.
2017 [19]

FastDeRain4 12 (Synthetic Test)
4 (Real Test)

Streak Eq. (2) 12 video sequences are synthesized with 4 clean
videos and 3 types of rain streaks.

Jiang et al.
2019 [18]

MRF 5 (Synthetic Test) 1
(Real Test)

Streak Eq. (2) Various rain and snow video sequences include
illumination variations, camera motions, moving

objects, etc.

Ren et al.
2017 [31]

NTURain5 25 (Synthetic
Train) 8 (Synthetic
Test) 7 (Real Test)

Streak Eq. (2) Three to four different rain appearances are
synthesized over each video clip to provide
us 25 rainy scenes. 8 testing scenes can be
divided into two groups: one shot from a

panning and unstable camera and the other from
a fast-moving camera.

Liu et al.
2018 [4]

RainSynLight256 190 (Synthetic
Train) 25

(Synthetic Test)

Streak, Occlusion Eq. (4) The dataset is synthesized by non-rain sequences
with the rain streaks generated by the

probabilistic model [11].

Liu et al.
2018 [26]

RainSynComplex256 190 (Synthetic
Train) 25

(Synthetic Test)

Streak, Occlusion Eq. (4) The dataset is synthesized by non-rain sequences
with the rain streaks generated by the

probabilistic model [11], sharp line streaks [42]
and sparkle noises.

Liu et al.
2018 [26]

RainSynAll100 900 (Synthetic
Train) 100

(Synthetic Test)

Streak, Occlusion,
Rain Accumulation,
Accumulation Flow

Eq. (5) The dataset is generated by 1,000 clean
sequences from the Vimeo-90K dataset [40]

with the mentioned four kinds of
degradations.

Our work

1http://mcl.korea.ac.kr/deraining
2https://github.com/wwzjer/RainRemoval_ICCV2017
3https://github.com/MinghanLi/MS-CSC-Rain-Streak-Removal
4https://github.com/TaiXiangJiang/FastDeRain/blob/local/Data/data.md
5https://github.com/hotndy/SPAC-SupplementaryMaterials
6https://github.com/flyywh/J4RNet-Deep-Video-Deraining-CVPR-2018
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B̂i
t ¼

ĥt � 1� b̂i
t

� �
� Ât

max b̂i
t; �

� � ; (8)

where � signifies the threshold that helps guarantee the
numerical stability, which in our experiments is set to 0.1. ĥt

aims to regress Ot �Ut � St. This module, which is injected
to the whole network for an end-to-end training, makes full
use of the prior of the physics model and brings in a more
effective architecture.

4.4 Refined Deraining Network

Having estimated the ðt� 1Þth and ðt� 2Þth rain-free back-
ground frames B̂f

t�1 and B̂f
t�2 as well as the initially estimated

background of B̂i
t at time-step t, Refined-DerainNet takes

them as input:

s
0
1 ¼ B̂f

t�2; B̂
f
t�1; B̂

i
t;Ot�1;Otþ1

h i
(9)

s
0
2 ¼ B̂f

t�2; B̂
f
t�1;Ot;Otþ1;Otþ2;

h i
; (10)

and directly predicts more refined rain-free background
frames.

Refined-DerainNet has the same architecture as Initial-
DerainNet. In the network, features are extracted from s

0
1

and s
0
2, respectively, and summed together at the bottleneck

Fig. 3. Our two-stage progressive network framework for video rain removal. In the first stage, Initial-DerainNet uses successive rain frames
Ot�2;Ot�1; . . . ;Otþ2 as its input and outputs the estimation of the rain-related variables of the frame t. Physics recovery module translates these pre-
dicted rain-related variables into the initially estimated background frame Bi

t with the guidance of the inverse recovery in Eq. (3) and Eq. (5). In the

second stage, Refined-DerainNet takes the existing clean frames (bBf

t�2,
bBf
t�1 and the initially estimated clean frame bBi

t from the first stage) as well as
their corresponding rainy frames Otþ1, Otþ2 as the network’s input to directly predict the rain-free frames. We train the whole model in an end-to-end
manner with the loss functions for variable estimation Lf

Var, and background frame refinement (reconstruction constraint Lf

Rect, adversarial learning
Lf

Dis, and dark channel prior constraint Lf

Dark
; Lf

Dark TV
).

Fig. 4. (a) The architecture of our encoder in Fig. 3. (b) The sub-encoder architecture that constitutes the encoder in (a).
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of the encoder and decoder, which bridges the encoder and
decoder and has the smallest spatial size. The network
employs the skip connections as well as a convolutional
LSTM. The convolutional LSTM is used to propagate the
information at the feature level across frames, as denoted in
Fig. 3, at the beginning of the decoder. We re-estimate the
rain-free frames with a refinement network:

B̂f
t ¼ GR s

0
1; s

0
2

� �
; (11)

where B̂f
t is the refined rain-free frame. GRð�Þ denote the

process of Refined-DerainNet.

4.4.1 Adversarial Learning

To check whether the output (the clean background) looks
realistic and indeed clean, we employ a discriminator, using
the following loss functions:

Lf
Rect ¼ �SSIM B̂f

t ;Bt

� �
; (12)

Lf
Dis ¼ �log GDðBtÞð Þ � log 1�GD B̂f

t

� �� �
; (13)

where GDð�Þ is the discriminator, Lf
Dis is the adversarial loss,

and Bt is the corresponding ground-truth. Lf
Rect is the recon-

struction loss to keep the fidelity, and SSIM �ð Þ is the SSIM
function.

We also intend to keep the refined images free from rain
accumulation and continuous temporally. For this, we
apply constraints based on the dark channels [48] of the
refined frames:

Lf
Dark ¼ Dark B̂f

t

� ���� ���2
2
; (14)

Lf
Dark TV ¼ Dark B̂f

t

� �
�Dark B̂f

t�1

� ���� ���2
2
; (15)

where Dark �ð Þ is the function to calculate the dark channel
of the input. The first term, the dark channel minimization,
makes the refined frames more rain-accumulation free
while the second term, the dark channel temporal total vari-
ation, makes the refined frame more temporally continuous.

4.4.2 Loss Functions

Our network is trained in an end-to-end manner. The loss
functions are expressed as:

Lall ¼ Li
Var þ �RectL

f
Rect þ �DisL

f
Dis þ �DarkL

f
Dark (16)

þ �Dark TVL
f
Dark TV;

Li
Var ¼ �SSIM ĥi

t;ht

� �
� SSIM b̂it;bt

� �
� SSIM Âi

t;At

� �
;

(17)

where ht, bt and At are the corresponding ground truths,
and �Rect, �Dis, �Dark and �Dark TV are the weighting para-
meters.

5 EXPERIMENTAL RESULTS

5.1 Datasets

Our Dataset Synthesis. Our dataset is synthesized based on
Eq. (5). The synthesized videos come from two kinds of
resources: 1) single images from OTS [54] with the depth
information and sampled uniform motions; 2) real videos
without the depth information.

In the first case, the transmission bt is generated by:

bt ¼ exp �sbt dt=C
b
t

� �
; (18)

where sbt is sampled from a uniform distribution between
[2.6, 4.6], dt is the scene depth, and Cb

t is set to 10 empiri-
cally. The global atmospheric light At is sampled from a
uniform distribution between [0.25, 0.95]. The motion vector
of the frame is sampled from a uniform distribution
between �BMV

t ;BMV
t

� �
, where BMV

t is a quarter of the mini-
mum of the frame’s weight and height. The synthesized
motions will be applied to crop different image regions to
form a simulated video. The accumulation flow Ut is gener-
ated via the following process: we sample a nature gray
image from BSD500 dataset [56], resize it to a very large
one, crop and blur it, and then adjust its intensity range
(with a random value sampled from the distribution
between [0.1, 0.5]) globally to simulate the accumulation
flow; the motion of the accumulation flow is selected from
KITTI dataset [55] with a guided blurring operation; after
that, this motion guides the accumulation flow to move
among different time-steps. The rain streak St and occlu-
sion-related variables at;Mt are generated following the
same procedure in [26], [27].

In the second case, the procedures are the same in most
aspects. The differences lie in: 1) bt is global variable sam-
pled from [0.5, 1] instead of a pixel-wise one; 2) the
background sequences are selected from the Vimeo-90K
Dataset [40]; 3) the videos are ready-made, which are not
synthesized from single images. More details about our
dataset synthesis can be found on our website.

Finally, our dataset includes 900 training sequences and
100 validation sequences, where the sequence lengths of half
of these sequences are 7while those of the other half are 9.

Evaluation Datasets. The proposed method is compared
with SOTA on widely used datasets. In [26], Liu et al. pro-
pose two datasets RainSynComplex25 and RainSynLight25
with respective heavy and light rain streaks. In [4], Chen
et al. propose NTURain, which consists of two groups. One
is captured by panning and unstable camera that has slow
movements, while the other is taken from a car-mount fast
moving camera. In this paper, we additionally propose
RainSynAll100, which is generated by 500 clean sequences
and 500 clean images with the mentioned four kinds of deg-
radation factors. The whole dataset consists of testing and
training datasets, including the respective 100 and 900 video
sequences. We use practical rain video sequences selected from
of movie clips and videos of Youtube website.

5.2 Evaluations

Baselines. Our MFGAN is compared with the following state-
of-the-art (SOTA) methods: DetailNet [8], Discriminative
Sparse Coding (DSC) [28], Joint Rain Detection and Removal
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(JORDER) [42], Progressive Recurrent Network (PReNet) [30],
Uncertainty guided Multi-scale Residual Learning (UMRL)
[44], Stochastic Encoding (SE) [39], Temporal Correlation and
Low-Rank Matrix completion (TCLRM) [21], Discriminative
Intrinsic Priors (DIP) [19], Joint Recurrent Rain Removal and
Reconstruction (J4RNet) [26], FastDeRain [18],MultiScale Con-
volutional Sparse Coding (MS-CSC) [23], SuperPixel Align-
ment and Compensation CNN (SpacCNN) [4]. The code links
of all compared methods are provided in Table 4. J4RNet,
DetailNet, JORDER,MS-CSC, PReNet, and SpacCNN are built
based on deep-learning. SE, FastDerain, TCLRM, MS-CSC,
J4RNet, DIP, and SpacCNN are video rain removal methods.
DSC, DetailNet, PReNet, JORDER, and UMRL are single
image deraining methods. When we conduct evaluations on
RainSynAll100, for the methods that do not handle rain accu-
mulation, spatio-temporal MRF dehazing (MRF) [3] and End-
to-end united Video Dehazing and detection Network (EVD-
Net) [22] are taken for pre-processing or post-processing.

Implementation Details. For quantitative evaluation, we
use RainSynLight25, RainSynComplex25, NTURain, our pro-
posed RainSynAll100, and our collected real rain videos for
evaluation. As demonstrated in Table 1, NTURain includes
25 paired videos for training and 8 for testing. Both RainSyn-
Light25 and RainSynHeavy25 include 190 paired videos for
training and 25 for testing, respectively. Our proposed Rain-
SynAll100 includes 900 paired videos for training and 100
for testing. For qualitative evaluation, we use the collected
real rain videos that do not have the paired clean version.
Our MFGAN is trained via two steps. In the first step, our
model is first trained without using adversarial loss Lf

Dis, as
well as dark channel prior related losses Lf

Dark and Lf
Dark TV.

In the second step, all losses are used for training. The
weighting parameters are set as follows: �Rect ¼ 1, �Dis ¼
0:001, �Dark ¼ 0:01 and �Dark TV ¼ 0:1. Adam optimizer is

used in the whole training process with the learning rate 1e-
4 for both generator and discriminator of our MFGAN. The
model is initialized by Kaiming Initialization [53]. Empiri-
cally, the initialized weight of the convolutional layer takes
only 0.5 of the default value. All training videos are sam-
pled and cropped into 128� 128� 5 cubics with a batch
size of 2. For the non-deep learning-based methods, includ-
ing TCLRM, SE, DSC, UMRL, FastDeRain, JCAS, and DIP,
the evaluation is directly performed based on the codes
released by the authors. For DetailNet and SpacCNN,we use
their released models. JORDER and J4RNet are retrained
based on the gray version of the respective training set, fol-
lowing their original settings. J4RNet-E, J4RNet-P, CVPR-
2019, and our proposed method are retrained with the
respective training set when the evaluation is performed on
different datasets. MS-CSC does not need training, as it is an
optimization-based deep-learning method. In the quantita-
tive evaluation, Structure Similarity Index (SSIM) [38] and
Peak Signal-to-Noise Ratio (PSNR) [17] are used as the qual-
ity measures. We follow previous methods to compare the
quantitative results in the luminance channel only, since the
human visual system is more sensitive to the luminance
channel compared to the chrominance ones.

Quantitative Evaluation. In Table 2, our method is com-
pared on the datasets with rain streak degradation only.
Our method achieves better performance compared with
previous methods. The proposed method obtains more than
7.5 dB and 4.0 dB PSNR gains on RainSynComplex25 and
RainSynLight25 compared with J4RNet and SpacCNN.
Compared to our CVPR-2019 results [41], Our method
obtains almost 5.0 dB and 1.1dB PSNR gains on RainSyn-
Complex25 and RainSynLight25.

All methods are also evaluated on the proposed synthe-
sized rain dataset RainSynAll100. SE, FastDerain, DIP,

TABLE 2
Quantitative Evaluation of Different Rain Streak Removal Methods on RainSynLight25, RainSynComplex25, and NTURain

Best results are denoted in red and the second best results are denoted in blue.

TABLE 3
Quantitative Evaluation on RainSynAll100

ST-MRF and EVD-Net as used as pre/post-processing. Best results are denoted in red and the second best results are denoted in blue.
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SpacCNN and MS-CSC are combined with two SOTA video
defogging methods: EVD-Net [22] and ST-MRF [3] (post/pre-
processing of rain accumulation removal) for a fair compari-
son. In Table 3, MRF + DIP uses the sequential combination of
ST-MRF and DIP. DIP + MRF takes ST-MRF as post-process-
ing. EVD-Net + DIP and DIP+ EVD-Net employ EVD-Net as
pre/post-processing, respectively. The same applies to other
SOTA methods. J4RNet-E uses the method in [26] to predict
the background frame based on the input rain frame directly.
J4RNet-P injects the inverse recovery module to predict the
rain-related variables first and then estimate the background
frame accordingly based on the predicted variables. As is illus-
trated in Table 3, ourmethod rank the first among all methods.
The performance gain is almost 6.0 dB in PSNR and 0.3 in
SSIM. Compared to our previous CVPR-2019 results [41], our
method obtains more than 0.170 and 4dB gains in SSIM and
PSNR, respectively.

Qualitative Evaluation. Visual results of different deraining
methods are also compared in Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, and 16. Figs. 5, 6, and 7 show the results on synthetic
rain videos. It is illustrated that, our method performs better
than other SOTAmethods on the synthetic data. Ourmethod
also obtains better results than other SOTA methods on real
images (Figs. 9-7). For Figs. 9, 10, 11, 12, 13, and 14, all meth-
ods only apply rain streak removal. It is shown that, the pro-
posed method method is better to remove most large (Figs. 8
and 9) and small rain streaks (Fig. 10). For accumulation, our
method restores the best results in Figs. 14, 15, and 16. Note
that, For Fig. 15, other methods apply EVD-Net as post-proc-
essing. Comparatively, our method is more successful to
remove rain accumulation. For Fig. 16, other methods apply
ST-MRF as pre-processing. The results of other methods are
over-exposed. Comparatively, our method obtains naturally
looking results.

Fig. 5. Results of rain removal methods on a video frame from the synthesized dataset RainSynComplex25.

Fig. 6. Results of rain removal methods on a video frame from the synthesized dataset RainSynAll100. Except for our method, other methods apply
ST-MRF as post-processing.
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Complexity Comparison. In Table 5, we compare the
runtime of several SOTA methods. The testing video’s
resolution is 832� 512. The proposed method, J4RNet-E,
and J4RNet-P method are implemented by Pytorch.
Other SOTA methods are implemented by MATLAB.
DetailNet and SpacCNN are built based on MatConv-
Net.1 JORDER is built on the Caffe’s Matlab wrapper.2

TCLRM is built based on CPU while other methods are
GPU-based methods. Generally, the running speed of the
proposed method is on par with other SOTA methods.
Note that, compared with our previous work [41], our

this work only needs almost a half running time. We
also compare the parameters of different deraining meth-
ods in Table 6. In general, the parameters of our light-
weighted model (Ours-S used for only rain streaks in
Table 2) are on par with those of JORDER, CVPR-2019
and SpacCNN. However, Ours-S achieves much better
quantitative results on the three datasets in Table 2. Our
full model (Ours-L) includes many more parameters and
leads to significantly superior performance as demon-
strated in the quantitative results of Table 3 and the
visual results in Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, and 17. It is noted that, Ours-S and Ours-L have
more parameters as they introduce 3D convolutions to
aggregate temporal information at the feature level. The

Fig. 7. Results of rain removal methods on a video frame from the synthesized dataset RainSynAll100. Except for our method, other methods apply
EVD-Net as pre-processing.

Fig. 8. Results of rain streak removal by different methods on a real video frame. The results of SE, PreNet, FastDeRain, UMRL, and MS-CSC have
remaining rain streaks, as denoted in blue boxes. Meanwhile, SE, PreNet and FastDeRain also falsely remove some details, as denoted by red
boxes. Comparatively, our method can well handle the rain streaks.

1. http://www.vlfeat.org/matconvnet/
2. http://caffe.berkeleyvision.org/
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Fig. 9. Results of rain streak removal by different methods on a real video frame. The results of SE, DIP, FastDeRain, UMRL, and MS-CSC have obvi-
ous remaining rain streaks. For SpacCNN, there are small rain streaks in the regions denoted by blue boxes and details are falsely removed as
denoted in the red box. Comparatively, our method can well handle the rain streaks.

Fig. 10. Results of rain streak removal by different methods on a real video frame. The results of JCAS, UGSM, MS-CSC, SE, and FastDeRain have
obvious remaining rain streaks. For SpacCNN, there are small rain streaks in the regions denoted by blue boxes. Comparatively, our method can well
handle the rain streaks.

Fig. 11. Results of rain streak removal by different methods on a real video frame. The results of JCAS, UGSM, and FastDeRain have obvious
remaining rain streaks, as denoted by blue arrows. As the video clip includes large camera motions, the results of MS-CSC and SE are totally dam-
aged. For DIP, there are remaining rain streaks denoted by blue arrows and the details are blurred in the regions denoted by red arrows. Compara-
tively, our method can well handle the rain streaks and preserve structure details.
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increased parameters do not certainly lead to an
increased computational complexity as the 2D convolu-
tions in other models will be reused many times when
dealing with multiple input frames at a certain time-step.

5.3 Ablation Studies

Ablation Study on Network Architecture. In Table 7, our
methods with different components are evaluated.

Table 7 shows that, the LSTM and SF-DerainNet improve
the quantitative results significantly (v1 versus v4 and
v2 versus v4). The rain streak removal can be
benefited from the physics network, resulting a higher
SSIM (v3 versus v4). Adding flow estimation and align-
ment cannot further improve the performance in our
case (v4 versus v5). Therefore, v4 is selected as our final
version.

Fig. 12. Results of rain streak removal by different methods on a real video frame. The results of JCAS, UGSM, MS-CSC, SE, and FastDeRain have
obvious remaining rain streaks as the rain streaks are too dense in the frame. SE additionally suffers from the color cast. SpacCNN still has remain-
ing rain streaks as denoted by the blue box. Comparatively, our method can successfully remove most rain streaks.

Fig. 13. Results of rain streak removal by different methods on a real video frame. It is clearly observed that, the results of JCAS, UGSM, MS-CSC,
SE, and FastDeRain fail to remove the intensive rain streaks. J4RNet still has remaining rain streaks as denoted by blue boxes. Comparatively, our
method can successfully remove most rain streaks.
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Visual Comparisons of Different Versions. We also compare
our results with our previous results (CVPR-2019) [41] in
Fig. 17. The figure shows our method is more successful in
removing the rain streaks, as illustrated in the blue boxes of
the top two panels in Fig. 17, and in removing rain accumu-
lation, as illustrated in the blue boxed of the bottom two
panels in Fig. 17.

Result of Versions with Different Parameters. We also show
the performance of our methods with different parameters
in Fig. 18. The figure shows that more parameters lead to
higher performance, and with more parameters, the mar-
ginal performance gain is small.

6 CONCLUSION

We introduced a video deraining method that consider more
comprehensive degradation factors, i.e., accumulation, rain
streak, accumulation flow and occlusion. To accomplish this,
a new rain model is proposed, which can capture the factors,
i.e., rain accumulation, accumulation flow, rain streaks, and
rain occlusion. Based on the model, a novel rain video dataset
is synthesized to support the development and evaluation of
our deraining method. A recurrent neural network (RNN) is
constructed, where the inverse recovery module can be
injected. Our proposed two-stage RNN exploits the

Fig. 14. Results of rain removal (rain streak and accumulation removal) by different methods on a real video frame. No method applies pre-process-
ing or post-processing. The remaining rain streaks are denoted in blue boxes.

Fig. 15. Results of rain removal (rain streak and accumulation removal) by different methods on a real video frame. Except for our method, other
methods apply EVD-Net as post-processing. The remaining rain streaks are denoted in blue boxes.
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knowledge of adversarial learning and physics model. The
first stage provides the physics accurate results and then in
the second stage, the results are further processed by the
generator trained via the adversarial learning, to adjust the
color and contrast distributions aswell as to correct details.

TABLE 5
Running TimeComparison (in Section) of Different Rain Removal

Methods on a Videowith the Spatial Resolution 832� 512

Methods JORDER DetailNet FastDeRain SpacCNN TCLRM

Time 0.6329 1.4698 0.3962 9.5075 192.7007

Methods MS-CSC SE CVPR-2019 J4RNet Proposed

Time 15.7957 19.8516 0.8974 0.8401 0.5146

TABLE 6
Parameter Comparison of Different Deep-Learning Based

Rain Removal Methods

Methods DetailNet PreNet JORDER SpacCNN

#Para. 58,175 168,963 4,169,024 1,430,403

Method - CVPR-2019 Ours-S Ours-L

#Para. - 4,466,694 6,964,803 29,472,018

TABLE 7
Ablation Analysis for Network Architecture

Baseline v1 v2 v3 v4 v5

Initial-DerainNet � @ @ @ @

Inverse Recovery @ @ � @ @

LSTM @ � @ @ @

Alignment � � � � @

PSNR 23.79 24.82 24.93 25.14 24.76

SSIM 0.9029 0.9166 0.9090 0.9172 0.9160

Best results are denoted in red and the second best results are denoted in blue.

Fig. 16. Results of rain removal (rain streak and accumulation removal) by different methods on a real video frame. Except for our method, other
methods apply ST-MRF as pre-processing. The remaining rain streaks are denoted in blue boxes.

TABLE 4
Summary of Code Links for All Methods

Methods Project Page

DetailNet https://xueyangfu.github.io/projects/tip2017.html
DSC http://www.math.nus.edu.sg/ matih/download/imaee_derainine/rain_removal_v.l.l.zin
PReNet https://github.com/csdwren/PReNet
UMRL https://github.com/raieevyasarla/UMRL&ndash;using-Cycle-Spinning
SE https://github.com/wwzier/RainRemoval_ICCV2017
TCLRM http://mcl.korea.ac.kr/derainina/
DIP https://github.com/TaiXiangJiang/FastDeRain
FastDeRain -
J4RNet https://github.com/flyywh/J4RNet-Deep-Video-Derainina-CVPR-2018
MS-CSC https://github.com/MinehanLi/MS-CSC-Rain-Streak-Removal
SpacCNN https://github.com/hotndv/SPAC-SupplementarvMaterials
MRF https://caibolun.aithub.io/st-mrf/
EVD-Net https://github.com/Boyiliee/EVD-Net
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Fig. 17. Visual comparisons of our method and our previous version (CVPR-2019).

YANG ETAL.: RECURRENT MULTI-FRAME DERAINING: COMBINING PHYSICS GUIDANCE ANDADVERSARIAL LEARNING 8583

Authorized licensed use limited to: Peking University. Downloaded on November 01,2022 at 06:52:18 UTC from IEEE Xplore.  Restrictions apply. 



ACKNOWLEDGMENTS

This work was supported by the National Key Research and
Development Program of China under Grant 2018AAA
0102702, the Fundamental Research Funds for the Central
Universities, the National Natural Science Foundation of
China under Contract No. 61772043, No. 62022038, and No.
62022002, the National Research Foundation Singapore under
its AI Singapore Programme (Award Number: [AISG-100E-
2019-035]), the Hong Kong RGC ECS under Grant 21211018,
GRF under Grant 11203220. This is a research achievement of
Key Laboratory of Science, Technology and Standard in
Press Industry (Key Laboratory of Intelligent Press Media
Technology). The work of Robby T. Tan was supported by
MOE2019-T2-1-130.

REFERENCES

[1] P. C. Barnum, S. Narasimhan, and T. Kanade, “Analysis of rain
and snow in frequency space,” Int. J. Comput. Vis., vol. 86, no. 2/3,
2010, Art. no. 256.

[2] J. Bossu, N. Hauti�ere, and J.-P. Tarel, “Rain or snow detection in
image sequences through use of a histogram of orientation of
streaks,” Int. J. Comput. Vis., vol. 93, no. 3, pp. 348–367, 2011.

[3] B. Cai, X. Xu, and D. Tao, “Real-time video dehazing based on
spatio-temporal MRF,” in Proc. Pacific Rim Conf. Multimedia, 2016,
pp. 315–325.

[4] J. Chen, C.-H. Tan, J. Hou, L.-P. Chau, and H. Li, “Robust video
content alignment and compensation for rain removal in a CNN
framework,” in Proc. Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 6286–6295.

[5] C. Dong, Y. Deng, C. C. Loy, and X. Tang, “Compression artifacts
reduction by a deep convolutional network,” in Proc. IEEE Int.
Conf. Comput. Vis., 2015, pp. 576–584.

[6] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution
using deep convolutional networks,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 38, no. 2, pp. 295–307, Feb. 2016.

[7] X. Fu, J. Huang, X. Ding, Y. Liao, and J. Paisley, “Clearing the
skies: A deep network architecture for single-image rain remov-
al,” IEEE Trans. Image Process., vol. 26, no. 6, pp. 2944–2956, Jun.
2017.

[8] X. Fu, J. Huang, D. Zeng, Y. Huang, X. Ding, and J. Paisley,
“Removing rain from single images via a deep detail network,” in
Proc. Conf. Comput. Vis. Pattern Recognit., 2017, pp. 3855–3863.

[9] X. Fu, B. Liang, Y. Huang, X. Ding, and J. Paisley, “Lightweight
pyramid networks for image deraining,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 31, no. 6, pp. 1794–1807, Jun. 2020.

[10] K. Garg and S. K. Nayar, “When does a camera see rain?,” in Proc.
10th IEEE Int. Conf. Comput. Vis., 2005, 1067–1074.

[11] K. Garg and S. K. Nayar, “Photorealistic rendering of rain
streaks,” ACM Trans. Graph., vol. 25, no. 3, pp. 996–1002, 2006.

[12] S. Gu, D. Meng, W. Zuo, and L. Zhang, “Joint convolutional anal-
ysis and synthesis sparse representation for single image layer
separation,” in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 1708–
1716.

[13] X. Hu, C.-W. Fu, L. Zhu, and P.-A. Heng, “Depth-attentional fea-
tures for single-image rain removal,” in Proc. IEEE/CVF Conf. Com-
put. Vis. Pattern Recognit., 2019, pp. 8022–8031.

Fig. 18. Performance of versions having different channels and parameters.

8584 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: Peking University. Downloaded on November 01,2022 at 06:52:18 UTC from IEEE Xplore.  Restrictions apply. 



[14] Y. Hu, W. Yang, S. Xia, W. Cheng, and J. Liu, “Enhanced intra pre-
diction with recurrent neural network in video coding,” in Proc.
Data Compression Conf., 2018, pp. 413–413.

[15] D.-A. Huang, L.-W. Kang, Y.-C. F.Wang, and C.-W. Lin, “Self-learn-
ing based image decomposition with applications to single image
denoising,” IEEE Trans. Multimedia, vol. 16, no. 1, pp. 83–93, Jan.
2014.

[16] D.-A. Huang, L.-W. Kang, M.-C. Yang, C.-W. Lin, and Y.-C. F.
Wang, “Context-aware single image rain removal,” in Proc. IEEE
Int. Conf. Multimedia Expo, 2012, pp. 164–169.

[17] Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in
image/video quality assessment,” Electron. Lett., vol. 44, no. 13,
pp. 800–801, 2008.

[18] T. Jiang, T. Huang, X. Zhao, L. Deng, and Y. Wang, “Fastderain: A
novel video rain streak removal method using directional gradi-
ent priors,” IEEE Trans. Image Process., vol. 28, no. 4, pp. 2089–
2102, Apr. 2019.

[19] T.-X. Jiang, T.-Z. Huang, X.-L. Zhao, L.-J. Deng, and Y. Wang, “A
novel tensor-based video rain streaks removal approach via utiliz-
ing discriminatively intrinsic priors,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2017, pp. 4057–4066.

[20] L. W. Kang, C. W. Lin, and Y. H. Fu, “Automatic single-image-
based rain streaks removal via image decomposition,” IEEE Trans.
Image Process., vol. 21, no. 4, pp. 1742–1755, Apr. 2012.

[21] J. H. Kim, J. Y. Sim, and C. S. Kim, “Video deraining and des-
nowing using temporal correlation and low-rank matrix com-
pletion,” IEEE Trans. Image Process., vol. 24, no. 9, pp. 2658–
2670, Sep. 2015.

[22] B. Li, X. Peng, Z. Wang, J. Xu, and D. Feng, “End-to-end united
video dehazing and detection,” in Proc. AAAI Conf. Artif. Intell.,
2018, pp. 7016–7023.

[23] M. Li et al., “Video rain streak removal by multiscale convolu-
tional sparse coding,” in Proc. IEEE Conf. Comput. Vis. Pattern Rec-
ognit., 2018, pp. 6644–6653.

[24] R. Li, L.-F. Cheong, and R. T. Tan, “Single Image deraining using
scale-awaremulti-stage recurrent network,” 2017, arXiv: 1712.06830.

[25] Y. Li, R. T. Tan, X. Guo, J. Lu, and M. S. Brown, “Rain streak
removal using layer priors,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit., 2016, pp. 2736–2744.

[26] J. Liu, W. Yang, S. Yang, and Z. Guo, “Erase or fill? Deep joint
recurrent rain removal and reconstruction in videos,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 3233–3242.

[27] J. Liu, W. Yang, S. Yang, and Z. Guo, “D3R-Net: Dynamic routing
residue recurrent network for video rain removal,” IEEE Trans.
Image Process., vol. 28, no. 2, pp. 699–712, Feb. 2019.

[28] Y. Luo, Y. Xu, and H. Ji, “Removing rain from a single image via
discriminative sparse coding,” in Proc. IEEE Int. Conf. Comput.
Vis., 2015, pp. 3397–3405.

[29] R. Qian, R. T. Tan, W. Yang, J. Su, and J. Liu, “Attentive generative
adversarial network for raindrop removal from a single image,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 2482–
2491.

[30] D. Ren, W. Zuo, Q. Hu, P. Zhu, and D. Meng, “Progressive image
deraining networks: A better and simpler baseline,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2019, pp. 3937–3946.

[31] W. Ren, J. Tian, Z. Han, A. Chan, and Y. Tang, “Video desnowing
and deraining based on matrix decomposition,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2017, pp. 4210–4219.

[32] V. Santhaseelan and V. K. Asari, “Utilizing local phase informa-
tion to remove rain from video,” Int. J. Comput. Vis., vol. 112,
no. 1, pp. 71–89, 2015.

[33] S. Starik and M. Werman, “Simulation of rain in videos,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. Workshops, 2003, pp. 406–409.

[34] S.-H. Sun, S.-P. Fan, and Y.-C. F. Wang, “Exploiting image struc-
tural similarity for single image rain removal,” in Proc. IEEE Int.
Conf. Image Process., 2014, pp. 4482–4486.

[35] A. K. Tripathi and S. Mukhopadhyay, “A probabilistic approach
for detection and removal of rain from videos,” IETE J. Res.,
vol. 57, no. 1, pp. 82–91, 2011.

[36] A. K. Tripathi and S. Mukhopadhyay, “Video post-processing:
Low-latency spatio-temporal approach for detection and removal
of rain,” IET Image Process., vol. 6, no. 2, pp. 181–196, 2012.

[37] T. Wang, X. Yang, K. Xu, S. Chen, Q. Zhang, and R. W. H. Lau,
“Spatial attentive single-image deraining with a high quality real
rain dataset,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2019, pp. 12270–12279.

[38] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,”
IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[39] W. Wei, L. Yi, Q. Xie, Q. Zhao, D. Meng, and Z. Xu, “Should we
encode rain streaks in video as deterministic or stochastic?,” in
Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 2516–2525.

[40] T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman, “Video
enhancement with task-oriented flow,” Int. J. Comput. Vis.,
vol. 127, no. 8, pp. 1106–1125, 2019.

[41] W. Yang, J. Liu, and J. Feng, “Frame-consistent recurrent video
deraining with dual-level flow,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2019, pp. 1661–1670.

[42] W. Yang, R. T. Tan, J. Feng, J. Liu, Z. Guo, and S. Yan, “Deep joint
rain detection and removal from a single image,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2017, pp. 1357–1366.

[43] W. Yang, R. T. Tan, J. Feng, J. Liu, S. Yan, and Z. Guo, “Joint rain
detection and removal from a single image with contextualized
deep networks,” IEEE Trans. Pattern Anal. Mach. Intell., Vol. 42,
no. 6, pp. 1377–1393, Jun. 2020.

[44] R. Yasarla and V. M. Patel, “Uncertainty guided multi-scale resid-
ual learning-using a cycle spinning CNN for single image de-rain-
ing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 8405–8414.

[45] H. Zhang and V. M. Patel, “Density-aware single image de-rain-
ing using a multi-stream dense network,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2018, pp. 695–704.

[46] X. Zhang, H. Li, Y. Qi, W. K. Leow, and T. K. Ng, “Rain removal in
video by combining temporal and chromatic properties,” in Proc.
IEEE Int. Conf. Multimedia Expo, 2006, pp. 461–464.

[47] L. Zhu, C. Fu, D. Lischinski, and P. Heng, “Joint bi-layer optimiza-
tion for single-image rain streak removal,” in Proc. IEEE Int. Conf.
Comput. Vis., 2017, pp. 2526–2534.

[48] K. He, J. Sun and X. Tang, “Single image haze removal using dark
channel prior,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33,
no. 12, pp. 2341–2353, Dec. 2011.

[49] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolu-
tional networks for biomedical image segmentation,” in Proc.
Int. Conf. Med. Image Comput. Comput.-Assisted Intervention,
2015, pp. 234–241.

[50] W. Ren et al., “Deep video dehazing with semantic segmentation,”
IEEE Trans. Image Process., vol. 28, no. 4, pp. 1895–1908, Apr. 2019.

[51] Z. Li, P. Tan, R. Tan, D. Zou, S. Z. Zhou, and L. Cheong,
“Simultaneous video defogging and stereo reconstruction,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015,
pp. 4988–4997.

[52] B. Cai, X. Xu, D. Tao, “Real-time video dehazing based on spatio-
temporal MRF,” in Proc. Pacific Rim Conf. Multimedia, 2016,
pp. 315–325.

[53] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classi-
fication,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1026–1034.

[54] B. Li et al., “Benchmarking single-image dehazing and beyond,”
IEEE Trans. Image Process., vol. 28, no. 1, pp. 492–505, Jan. 2019.

[55] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autono-
mous driving? The KITTI vision benchmark suite,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2012, pp. 3354–3361.

[56] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detec-
tion and hierarchical image segmentation,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 33, no. 5, 898–916, May 2011.

Wenhan Yang (Member, IEEE) received the BS
and PhD degrees (Hons.) in computer science from
Peking University, Beijing, China, in 2012 and 2018.
He is currently a postdoctoral research fellow at the
Department of Computer Science, City University of
Hong Kong. His current research interests include
image/video processing/restoration, bad weather
restoration and human-machine collaborative cod-
ing. He has authored more than 100 technical
articles in refereed journals and proceedings, and
holds 9 granted patents. He received the IEEE

ICME-2020 Best Paper Award, the IFTC 2017 Best Paper Award, and the
IEEECVPR-2018 UG2Challenge First Runner-up Award. He was the Can-
didate of CSIG Best Doctoral Dissertation Award in 2019. He served as the
area and session chair of IEEE ICME-2021, and the organizer of the IEEE
CVPR-2019/2020/2021UG2+Challenge andWorkshop.

YANG ETAL.: RECURRENT MULTI-FRAME DERAINING: COMBINING PHYSICS GUIDANCE ANDADVERSARIAL LEARNING 8585

Authorized licensed use limited to: Peking University. Downloaded on November 01,2022 at 06:52:18 UTC from IEEE Xplore.  Restrictions apply. 



Robby T. Tan (Member, IEEE) received the PhD
degree in computer science from the University
of Tokyo. He is currently an associate professor
at Yale-NUS College and ECE (Electrical and
Computing Engineering), National University of
Singapore. Previously, he was an assistant pro-
fessor with Utrecht University. His research inter-
ests include machine learning and computer
vision, particularly in dealing with bad weather,
physics-based, and motion analysis.

Jiashi Feng (Member, IEEE) received the PhD
degree from the National University of Singapore, in
2014. He is currently an assistant professor at the
Department of Electrical and Computer Engineer-
ing, National University of Singapore. Before joining
NUS as a faculty, he was a postdoc research follow
at UC Berkeley. His research interests include com-
puter vision and machine learning. In particular, he
is interested in object recognition, detection, seg-
mentation, robust learning and deep learning.

Shiqi Wang (Member, IEEE) received the BS
degree in computer science from the Harbin Insti-
tute of Technology, in 2008, and the PhD degree
in computer application technology from Peking
University, in 2014. From 2014 to 2016, he was a
post-doctoral fellow with the Department of Elec-
trical and Computer Engineering, University of
Waterloo, Waterloo, ON, Canada. From 2016 to
2017, he was with the Rapid-Rich Object Search
Laboratory, Nanyang Technological University,
Singapore, as a research fellow. He is currently

an assistant professor with the Department of Computer Science, City
University of Hong Kong. He has proposed more than 40 technical pro-
posals to ISO/MPEG, ITU-T, and AVS standards, and authored/coau-
thored more than 150 refereed journal/conference papers. His research
interests include video compression, image/video quality assessment,
and image/video search and analysis. He received the Best Paper Award
from IEEE ICME 2019, IEEE Multimedia 2018, PCM 2017, and is the
coauthor of a paper that received the Best Student Paper Award in the
IEEE ICIP 2018.

Bin Cheng received the BE degree from the Uni-
versity of Science and Technology of China, and
the PhD degree from the National University of
Singapore. He is currently a research director at
the Beijing Academy of Artificial Intelligence
(BAAI). His research interests include computer
vision, machine learning and the related applica-
tions. And he also successfully shipped a dozen
of technologies to incubate industry products,
including smart devices, search, live stream,
short video, and financial risk-control.

Jiaying Liu (Senior Member, IEEE) received the
PhD degree (Hons.) in computer science from
Peking University, Beijing China, in 2010. She is
currently an associate professor with Peking Uni-
versity Boya Young fellow with the Wangxuan
Institute of Computer Technology, Peking Univer-
sity. She has authored more than 100 technical
articles in refereed journals and proceedings,
and holds 50 granted patents. Her current
research interests include multimedia signal proc-
essing, compression, and computer vision. She is

a senior member of CSIG and CCF. She was a visiting scholar with the
University of Southern California, Los Angeles, from 2007 to 2008. She
was a visiting researcher with the Microsoft Research Asia in 2015 sup-
ported by the Star Track Young Faculties Award. She has served as a
member of Multimedia Systems and Applications Technical Committee
(MSATC), and Visual Signal Processing and Communications Technical
Committee (VSPC TC) in IEEE Circuits and Systems Society. She
received the IEEE ICME-2020 Best Paper Award and IEEE MMSP-2015
Top10 percent Paper Award. She has also served as the associate editor
of the IEEE Trans. on Image Processing, the IEEE Trans. on Circuit Sys-
tem for Video Technology and Elsevier JVCI, the technical program chair
of IEEE ICME-2021/ACM ICMR-2021, the publicity chair of IEEE ICME-
2020/ICIP-2019, and the area chair of CVPR-2021/ECCV-2020/ICCV-
2019. She was the APSIPA distinguished lecturer (2016-2017).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

8586 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: Peking University. Downloaded on November 01,2022 at 06:52:18 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


